Поиск по сайту




Пишите нам: info@ethology.ru

Follow etholog on Twitter

Система Orphus

Новости
Библиотека
Видео
Разное
Кросс-культурный метод
Старые форумы
Рекомендуем
Не в тему

Все | Индивидуальное поведение | Общественное поведение | Общие теоретические основы этологии | Половое поведение


список статей


Эволюция кооперации и альтруизма: от бактерий до человека
А.В. Марков
Обсуждение [0]

1. Кооперация и альтруизм

 

Изучение эволюции альтруизма и кооперации – это центральная тема эволюционной этики, и это одно из тех направлений, двигаясь по которым, биология – естественная наука – в последнее время начала смело вторгаться на «запретную» территорию, где до сих пор безраздельно хозяйничали философы, теологи и гуманитарии. Неудивительно, что вокруг эволюционной этики кипят страсти. Но об этих страстях я говорить не буду, потому что они кипят за пределами науки, а нас, биологов, интересует совсем другое. Нас интересует, почему, с одной стороны, большинство живых существ ведут себя эгоистично, но, с другой стороны, немало есть и таких, кто совершает альтруистические поступки, то есть жертвует собой ради других.

На этом слайде даны определения, я на них останавливаться не буду, потому что суть понятия «альтруизм» – как в этике, так и в биологии – думаю, всем хорошо понятна.  

Итак, перед биологами, пытающимися объяснить происхождение кооперации и альтруизма, стоят два основных вопроса.

С одной стороны, совершенно очевидно, что почти все жизненные задачи, стоящие перед организмами, в принципе гораздо легче решать совместными усилиями, чем в одиночку. Кооперация, то есть совместное решение проблем, обычно подразумевающее некоторую долю альтруизма со стороны кооператоров, могла бы стать для огромного множества организмов идеальным решением большинства проблем. Почему же тогда биосфера так не похожа на рай земной, почему она не превратилась в царство всеобщей любви, дружбы и взаимопомощи? Это первый вопрос.

Второй вопрос противоположен первому. Как вообще могут в ходе эволюции вознинкуть кооперация и альтруизм, если движущей силой эволюции является эгоистический в своей основе механизм естественного отбора? Примитивное, упрощенное понимание механизмов эволюции неоднократно подталкивало разных людей к абсолютно неверному выводу о том, что сама идея альтруизма несовместима с эволюцией. Этому способствовали такие, на мой взгляд, не очень удачные метафоры, как «борьба за существование» и особенно «выживание сильнейших». Если всегда выживает сильнейший, о каком альтруизме может идти речь? Кто кого первым съест, тот и оставит потомство, а добреньких альтруистов съедят первыми.

Но это, как я уже сказал, крайне примитивное и неправильное понимание эволюции. В чем здесь ошибка? Ошибка здесь в смешении уровней, на которых мы рассматриваем эволюцию. Ее можно рассматривать на уровне генов, особей, групп, популяций, видов, может быть, даже экосистем. Но результаты эволюции фиксируются (запоминаются) только на уровне генов. Поэтому первичным, основным уровнем, с которого мы должны начинать рассмотрение, является генетический уровень. На уровне генов в основе эволюции лежит конкуренция разных вариантов, или аллелей, одного и того же гена за доминирование в генофонде популяции. И вот на этом уровне никакого альтруизма нет и в принципе быть не может. Ген всегда эгоистичен. Если появится «добрый» аллель, который в ущерб себе позволит размножаться другому аллелю, то этот альтруистический аллель неизбежно будет вытеснен из генофонда и просто исчезнет.

Но если мы переведем взгляд с уровня конкурирующих аллелей на уровень конкурирующих особей, то картина будет уже другой. Потому что интересы гена не всегда совпадают с интересами организма. Как они могут не совпадать? Дело в том, что у них не совпадают сами физические рамки, в которых они существуют. Ген, или, точнее, аллель – это не единичный объект, он присутствует в генофонде в виде множества копий. А организм – это единичный объект, и он несет в себе обычно только одну или две из этих копий. Во многих ситуациях эгоистичному гену выгодно пожертвовать одной-двумя своими копиями для того, чтобы обеспечить преимущество остальным своим копиям, которые заключены в других организмах.

 

 

2. Родственный отбор

К этой мысли биологи стали подходить уже в 30-е годы прошлого века. Важнейший вклад в понимание эволюции альтруизма внесли в разное время три великих биолога: Рональд Фишер, Джон Холдейн и Уильям Гамильтон.

Теория, которую они построили, называется теорией родственного отбора. Суть ее образно выразил Холдейн, который однажды сказал «Я бы отдал жизнь за двух братьев или 8 кузенов». Что он имел при этом в виду, можно понять из следующей формулы, которая вошла в науку под названием «правило Гамильтона»:

«Ген альтруизма» (точнее, аллель, способствующий альтруистическому поведению) будет поддержан отбором и распространится в популяции, если

rB > C

 

         r  - степень генетического родства «жертвователя» и «принимающего жертву»

         B – репродуктивное преимущество, полученное адресатом альтруистического акта

         C – репродуктивный ущерб, нанесенный «жертвователем» самому себе.

Репродуктивное преимущество или ущерб можно измерять, например, в числе оставленных или не оставленных потомков.

С учетом того, что от акта альтруизма может выиграть не одна, а много особей, формулу можно модифицировать следующим образом:

nrB > C

где n – число принимающих жертву.

Обратите внимание, что «правило Гамильтона» не вводит никаких дополнительных сущностей и не опирается ни на какие специальные допущения. Оно чисто логически вытекает из элементарных базовых фактов популяционной генетики. Если nrB > C, «аллель альтруизма» начинает совершенно автоматически, без всяких внешних направляющих сил и без всякой мистики, увеличивать свою частоту в генофонде популяции.

С точки зрения самого «аллеля альтруизма» в этом никакого альтруизма нет, а есть чистый эгоизм. Этот аллель заставляет своих носителей – то есть организмы – совершать акт альтруизма, но тем самым аллель блюдет свои корыстные интересы. Он жертвует несколькими своими копиями, чтобы дать преимущество другим своим копиям. Естественный отбор – это ни что иное, как автоматическое и совершенно равнодушное и бессознательное взвешивание суммы выигрышей и проигрышей для аллеля – для всех его копий вместе – и если выигрыши перевешивают, аллель распространяется.

Правило Гамильтона обладает замечательной объясняющей и предсказательной силой.

 

В какой группе животных эволюция альтруизма привела к самым крупномасштабным последствиям? Я думаю, многие со мной согласятся, если я скажу, что это перепончатокрылые насекомые, у которых развилась так называемая эусоциальность (настоящая социальность): муравьи, пчелы, осы, шмели. У этих насекомых большинство самок отказываются от собственного размножения, чтобы помогать своей матери выращивать других дочерей. Почему именно перепончатокрылые?

Всё дело тут в особенностях наследования пола в этом отряде насекомых. У перепончатокрылых самки имеют двойной набор хромосом и развиваются из оплодотворенных яиц. Самцы гаплоидны (имеют одинарный набор хромосом) и развиваются из неоплодотворенных яиц.

Из-за этого складывается парадоксальная ситуация: сестры оказываются более близкими родственницами, чем мать и дочь. У большинства животных степень родства между сестрами и между матерями и дочерьми одинакова (50% общих генов, величина r в формуле Гамильтона равна 1/2). У перепончатокрылых родные сестры имеют 75% общих генов (r= 3/4), потому что каждая сестра получает от отца не случайно выбранную половину его хромосом, а весь геном полностью. Мать и дочь у перепончатокрылых имеют, как и у других животных, лишь 50% общих генов.

Вот и получается, что для эффективной передачи своих генов следующим поколениям самкам перепончатокрылых, при прочих равных, выгоднее выращивать сестер, чем дочерей.

Задачка на дом. Попробуйте с помощью правила Гамильтона объяснить следующее наблюдение. Рыбак поймал в море рыбку и потрошит ее на берегу. Это замечает чайка, она подлетает и хватает из воды рыбьи потроха. Перед этим она издает несколько громких призывных криков, на которые слетается еще два десятка чаек. Они немедленно набрасываются на первую чайку и пытаются отнять у нее добычу. Первая чайка, со своей стороны, не желает делиться лакомством и храбро отбивается от грабителей. Вопросы: 1) зачем чайка позвала других, почему бы ей не есть молча? 2) Если уж она такая заботливая, что позвала других, почему она не делится с ними добровольно, а пытается отбить «свое»?

Механизм родственного отбора, по-видимому, лежит в основе многих случаев альтруизма в природе. Кроме родственного отбора, существует целый ряд механизмов, одни из которых помогают, а другие, наоборот, препятствуют эволюции альтруизма. Рассмотрим эти механизмы на конкретных примерах.

 

 

3. Альтруисты и обманщики среди бактерий: эксперименты с Pseudomonas fluorescens.

Одно из перспективных направлений современной микробиологии — это экспериментальное изучение эволюции бактерий, эволюция в пробирке. Интересные результаты были получены на бактерии Pseudomonas fluorescens. Если этой бактерии предоставить необходимый минимум условий, она быстро эволюционирует прямо на глазах у исследователей, осваивает новые ниши и вырабатывает оригинальные адаптации.

В жидкой питательной среде бактерии развиваются сначала как одиночные, подвижные клетки, и постепенно занимают всю толщу бульона. Когда в среде становится мало кислорода, получают преимущество бактерии-мутанты, образующие пленку на поверхности среды.

Эти мутанты выделяют вещества, способствующие склеиванию клеток. Такие бактерии после деления не могут «отклеиться» друг от друга. Фокус тут в том, что одиночные клетки плавают в толще бульона, а склеившиеся всплывают на поверхность, где кислорода гораздо больше. Производство клея — дело дорогостоящее, однако общая награда (кислород) с лихвой покрывает расходы.

Возникновение таких колоний — само по себе большое эволюционное достижение. Но до настоящей социальности, тем более до настоящего многоклеточного организма тут еще очень далеко. Такие колонии недолговечны, потому что они совершенно беззащитны перед микробами-«обманщиками», которые начинают паразитировать на этой колонии. Проблема тут в том, что естественный отбор в такой колонии по-прежнему действует на индивидуальном, а не на групповом уровне. И отбор благоприятствует клеткам-«обманщикам», то есть мутантам, которые перестают производить клей, однако продолжают пользоваться преимуществами жизни в группе. В этой системе нет никаких механизмов, которые препятствовали бы такому жульничеству. Безнаказанность способствует быстрому размножению обманщиков, что приводит к разрушению колонии. Дальнейшая эволюция альтруизма и кооперации в такой системе оказывается невозможна из-за обманщиков (см.: Микробиологи утверждают: многоклеточность — сплошное жульничество).

Этот пример наглядно показывает, в чем состоит главное препятствие на пути эволюции кооперации и альтруизма. Это общее правило: как только начинает зарождаться кооперация, тут же появляются всевозможные обманщики, нахлебники и паразиты, которые во многих случаях просто лишают кооперацию всякого смысла, система разрушается, и происходит возврат к изолированному существованию особей.

Чтобы социальная система смогла развиться дальше самых первых начальных шагов, главное что ей необходимо – это выработать механизм борьбы с обманщиками. И такие механизмы у многих живых существ действительно вырабатываются. Часто это приводит к так называемой «эволюционной гонке вооружений»: обманщики совершенствуют способы обмана, а кооператоры совершенствуют способы выявления обманщиков, борьбы с ними, или пытаются не допустить самого появления обманщиков.

 

 

4. Опыты с Myxococcus xanthus показывают, что способность защищаться от обманщиков может появляться в результате единичных мутаций

 

Рассмотрим еще один пример, связанный с бактерией Myxococcus xanthus. Для этих микробов характерно сложное коллективное поведение. Иногда они собираются в большие скопления и устраивают коллективную «охоту» на других микробов. «Охотники» выделяют токсины, убивающие «добычу», а затем всасывают органические вещества, высвободившиеся при распаде погибших клеток.

При недостатке пищи миксококки образуют плодовые тела, в которых часть бактерий превращается в споры. В виде спор микробы могут пережить голодные времена. Плодовое тело «собирается» из огромного множества индивидуальных бактериальных клеток. Создание такой сложной многоклеточной структуры требует слаженных действий миллионов отдельных бактерий, из которых лишь часть получает прямую выгоду, а остальные жертвуют собой ради общего блага. Дело в том, что лишь некоторые из участников коллективного действа смогут превратиться в споры и передать свои гены следующим поколениям. Все остальные выступают в роли «стройматериала», обреченного умереть, не оставив потомства.

Как мы уже знаем, где начинает развиваться альтруизм – там появляются и паразиты-обманщики. Среди миксококков обманщики тоже есть: это генетические линии (или штаммы) миксококков, не способные к образованию собственных плодовых тел, но умеющие пристраиваться к «чужим» плодовым телам и образовывать там свои споры.

С одним из таких штаммов были проведены интересные эксперименты. Этот штамм сам не способен образовывать плодовые тела, однако он успешно внедряется в чужие плодовые тела и спорулирует там даже с большей эффективностью, чем «альтруистический» штамм-хозяин, построивший плодовое тело. Известно, что этот штамм обманщиков произошел от альтруистического предка в результате 14 мутаций.

Такую систему «паразит—хозяин», то есть смешанную культуру альтруистов и обманщиков, выращивали попеременно то в «голодной», то в богатой питательными веществами среде. Во время голодовок выжить могли только те бактерии, которым удалось превратиться в споры. Смешанная культура медленно, но верно шла к гибели. Ее деградация была вызвана тем, что с каждым экспериментальным циклом доля паразитов неуклонно росла, и в конце концов альтруистов осталось слишком мало, чтобы обеспечить себя и других плодовыми телами.

В этом опыте альтруисты так и не сумели выработать защиту от обманщиков. Произошло другое: у самих обманщиков произошла мутация, в результате которой бактерии восстановили утраченную способность к самостоятельному образованию плодовых тел, и одновременно получили дополнительное преимущество. Эти мутантные бактерии оказались защищены от «нахлебников» — то есть от своих прямых предков – бактерий-обманщиков. То есть одна-единственная мутация превратила обманщиков в альтруистов, защищенных от обмана. Эта мутация произошла в одном из генов-регуляторов, влияющих на поведение бактерий. Конкретный молекулярный механизм этого эффекта пока не выяснен (см.: Способность к сложному коллективному поведению может возникнуть благодаря единственной мутации).

 

 

5. Защита от обманщиков у социальных амеб Dictyostelium

Проблема обманщиков хорошо знакома и более сложным одноклеточным организмам, таким как социальные амебы Dictyostelium. Как и многие бактерии, эти амёбы при недостатке пищи собираются в большие многоклеточные агрегаты (псевдоплазмодии), из которых затем образуются плодовые тела. Те амёбы, чьи клетки идут на построение ножки плодового тела, жертвуют собой ради товарищей, которые получают шанс превратиться в споры и продолжить род.

Создается впечатление, что эволюция неоднократно «пыталась» создать из социальных бактерий или простейших многоклеточный организм — но дело почему-то не пошло дальше плазмодиев и довольно просто устроенных плодовых тел. Все по-настоящему сложные многоклеточные организмы формируются иным путем — не из множества индивидуальных клеток с немного различающимися геномами, а из потомков одной-единственной клетки (что гарантирует генетическую идентичность всех клеток организма).

Одна из причин «эволюционной бесперспективности» многоклеточных организмов, образующихся из скоплений одноклеточных индивидуумов, состоит в том, что такие организмы создают идеальные условия для развития социального паразитизма и нахлебничества. Любая мутация, позволяющая одноклеточному индивиду пользоваться преимуществами жизни в многоклеточном «коллективе» и ничего не давать взамен, имеет шанс распространиться, невзирая на ее гибельность для популяции.

Мы уже знаем, что, для того чтобы выжить, социальным организмам необходимо как-то защищаться от нахлебников. Эксперименты, проведенные на диктиостелиуме, показали, что вероятность развития устойчивости в результате случайных мутаций у этого организма тоже довольно высока, как и у миксококков. Опыты проводились с двумя штаммами диктиостелиума  — «честными» и «обманщиками». Если их начать морить голодом, они образуют химерные (смешанные) плодовые тела. При этом «обманщики» занимают лучшие места в плодовом теле и превращаются в споры, предоставляя «честным» амёбам в одиночку строить ножку плодового тела. В результате среди образовавшихся спор резко преобладают споры обманщиков.

Сначала исследователи искусственно повысили темп мутирования у «честных» амёб. Затем из множества получившихся мутантов взяли тысячу особей с разными мутациями и каждой из них дали возможность размножиться.

После этого начался отбор на устойчивость к нахлебникам, причем в качестве отбирающего агента использовались сами нахлебники. Амёб из тысячи мутантных штаммов смешивали в равной пропорции и объединяли с амёбами-обманщиками. Смешанную популяцию морили голодом, заставляя образовывать плодовые тела. Затем собирали образовавшиеся споры и выводили из них амёб. Естественно, среди них преобладали обманщики, но экспериментаторы убивали всех обманщиков антибиотиком (в геном честных амеб предварительно был вставлен ген устойчивости к данному антибиотику). В результате получалась смесь амёб-мутантов, но из тысячи исходных штаммов в ней теперь преобладали те, кто смог лучше других противостоять обманщикам. Этих амёб снова смешивали с обманщиками и снова заставляли образовывать плодовые тела.

После шести таких циклов в популяции амёб-мутантов остались представители только одного из тысячи исходных штаммов. Эти амебы оказались надежно защищены от обманщиков в результате мутации, которая у них произошла. Причем они защитились не от любых обманщиков, а только от тех, с которыми им пришлось конкурировать в эксперименте.

Более того, оказалось, что эти амебы-мутанты защищают от обмана не только себя, но и другие штаммы честных амёб, если их смешать. Ясно, что взаимопомощь честных штаммов открывает дополнительные возможности для борьбы с обманщиками.

Эти эксперименты были повторены много раз, и каждый раз в том или ином штамме амеб мутантов возникала устойчивость, причем мутировали разные гены и механизмы устойчивости возникали разные. Некоторые устойчивые штаммы сами при этом стали обманщиками по отношению к диким амебам, а другие остались честными (см.: Амёбы-мутанты не позволяют себя обманывать).

Исследование показало, что вероятность появления мутаций, обеспечивающих защиту от нахлебников, у диктиостелиума довольно высока. Само присутствие нахлебников способствует распространению защитных мутаций. Это должно приводить к эволюционной «гонке вооружений» между обманщиками и честными амёбами: первые совершенствуют средства обмана, вторые — средства защиты.

Эти примеры показывают, что в природе, очевидно, идет постоянная борьба между альтруистами и обманщиками, и поэтому геномы этих организмов «настроены» естественным отбором так, что случайные мутации с большой вероятностью могут приводить к появлению защиты от той или иной разновидности обманщиков.

Нечто подобное наблюдается в клетках иммунной системы многоклеточных животных. Аналогия между иммунной системой многоклеточных и средствами защиты от обманщиков у социальных одноклеточных может оказаться весьма глубокой. Есть даже гипотеза, согласно которой сложная иммунная система у животных изначально развилась не для борьбы с инфекциями, а для борьбы с клетками-обманщиками, клетками-эгоистами, которые пытались паразитировать на многоклеточном организме.

После всего сказанного, я думаю, уже понятно, что появление многоклеточных организмов было крупнейшим триумфом эволюции альтруизма. Ведь в многоклеточном организме большинство клеток – это клетки-альтруисты, которые отказались от собственного размножения ради общего блага.

 

 

6. Мирное сосуществование альтруистов и обманщиков у дрожжей

Обманщики мешают развитию кооперативных систем, потому что альтруисты, вместо того, чтобы развивать кооперацию, вынуждены ввязываться в бесконечную эволюционную гонку вооружений с обманщиками. Конечно, выражения типа «мешают» и «вынуждены ввязываться» – это метафорический язык, но всем, я надеюсь, понятно, что то же самое можно выразить корректными научными формулировками, просто это будет чуть дольше и скучнее.

Надо сказать, что далеко не всегда альтруистам удается выработать средства борьбы с обманщиками. В некоторых случаях некий минимальный уровень кооперации удается поддерживать и без таких средств.

Например, в популяциях дрожжей одни особи ведут себя как альтруисты: они производят фермент, расщепляющий сахарозу на легко усваиваемые моносахариды — глюкозу и фруктозу. Другие особи — «эгоисты» — сами не производят фермента, но пользуются плодами чужих трудов. Теоретически, это должно было бы приводить к полному вытеснению альтруистов эгоистами, несмотря на гибельность такого исхода для популяции. Однако в реальности численность альтруистов не падает ниже определенного уровня. Как выяснилось, возможность «мирного сосуществования» альтруистов с эгоистами обеспечивается небольшим преимуществом, которое получают альтруисты в случае очень низкого содержания глюкозы в среде, а также особым нелинейным характером зависимости скорости размножения дрожжей от количества доступной пищи. Для решения подобных задач используются модели, разработанные в рамках теории игр. Суть здесь в том, что в данном случае альтруизм при ближайшем рассмотрении оказывается не совсем бескорыстным: дрожжи-альтруисты помогают всем окружающим, но 1% произведенной ими глюкозы они все-таки берут себе сразу, в обход общего котла. И за счет этого однопроцентного выигрыша они, как выяснилось, могут мирно сосуществовать с эгоистами (см.: Честные дрожжи и дрожжи-обманщики могут жить дружно). Впрочем, понятно, что на таких мелких хитростях вряд ли можно построить серьезную, сложную кооперативную систему.

 

 

7. Парадокс Симпсона

Еще одна замечательная хитрость такого рода называется парадоксом Симпсона. Суть этого парадокса в том, что при соблюдении определенного набора условий частота встречаемости альтруистов в группе популяций будет расти, несмотря на то, что внутри каждой отдельной популяции эта частота неуклонно снижается.

На этом слайде показан гипотетический пример действия «парадокса Симпсона». В исходной популяции было 50% альтруистов и 50% эгоистов (кружок слева вверху). Эта популяция разделилась на три субпопуляции с разным соотношением альтруистов и эгоистов (три маленьких кружка справа вверху). В ходе роста каждой из трех субпопуляций альтруисты оказались в проигрыше — их процент снизился во всех трех случаях. Однако те субпопуляции, в которых изначально было больше альтруистов, выросли сильнее благодаря тому, что они имели в своем распоряжении больше «общественно-полезного продукта», производимого альтруистами (три кружка справа внизу). В результате, если сложить вместе три выросших субпопуляции, мы увидим, что «глобальный» процент альтруистов вырос (большой кружок слева внизу).

О том, что такой механизм в принципе возможен, в свое время говорили Холдейн и Гамильтон, которых я уже упоминал как создателей теории родственного отбора. Однако получить экспериментальные доказательства действенности парадокса Симпсона удалось лишь недавно.

Это было трудно сделать, потому что в каждом конкретном случае, когда мы видим распространение «генов альтруизма» в популяции, очень нелегко доказать, что здесь не замешаны какие-то другие, неизвестные нам выгоды, сопряженные с альтруизмом у данного вида организмов.

Чтобы выяснить, может ли «парадокс Симпсона» в одиночку обеспечить процветание альтруистов, американские биологи создали интересную живую модель из двух штаммов генетически модифицированных кишечных палочек.

В геном первого из двух штаммов («альтруисты») был добавлен ген фермента, синтезирующего сигнальное вещество N-ацил-гомосерин-лактон, используемое некоторыми микробами для химического «общения» друг с другом. Кроме того, в геном обоих штаммов был добавлен ген фермента, обеспечивающего устойчивость к антибиотику хлорамфениколу. К этому гену «приделали» такой промотор (регуляторную последовательность), который активизирует работу гена только в том случае, если в клетку извне поступает вышеупомянутое сигнальное вещество.

«Эгоисты» ничем не отличались от альтруистов, кроме того, что у них не было гена, необходимого для синтеза сигнального вещества.

Таким образом, сигнальное вещество, выделяемое альтруистами, необходимо обоим штаммам для успешного роста в присутствии антибиотика. Выгода, получаемая обоими штаммами от сигнального вещества, одинакова, но альтруисты тратят ресурсы на его производство, а эгоисты живут на готовеньком.

Поскольку оба штамма были созданы искусственно и не имели никакой эволюционной истории, экспериментаторы знали наверняка, что никаких «тайных хитростей» во взаимоотношениях альтруистов с эгоистами в их модели нет, и альтруисты не получают от своего альтруизма никаких дополнительных выгод.

В среде с добавлением антибиотика чистые культуры эгоистов, как и следовало ожидать, росли хуже, чем чистые культуры альтруистов (поскольку в отсутствие сигнального вещества ген защиты от антибиотика у эгоистов оставался выключен). Однако они начинали расти лучше альтруистов, как только в среду добавляли либо живых альтруистов, либо очищенное сигнальное вещество. Альтруисты в смешанной культуре росли медленнее, потому что им приходилось тратить ресурсы на синтез сигнального вещества. Убедившись, что модельная система работает в соответствии с ожиданиями, исследователи приступили к моделированию «парадокса Симпсона».

Для этого они посадили в 12 пробирок со средой, содержащей антибиотик, смеси двух культур в разных пропорциях (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95 и 100% альтруистов соответственно), подождали 12 часов, а затем измерили численность бактерий и процент альтруистов в каждой пробирке. Оказалось, что во всех пробирках, кроме 1-й и 12-й, процент альтруистов значительно снизился. Таким образом, альтруисты во всех случаях проигрывали конкуренцию эгоистам. Однако размер тех популяций, где изначально было больше альтруистов, вырос значительно сильнее, чем тех, где преобладали эгоисты. Когда авторы суммировали численности микробов во всех 12 пробирках, то выяснилось, что общий процент альтруистов заметно вырос: парадокс Симпсона успешно «сработал».

Однако в природе никто не будет нарочно смешивать альтруистов с эгоистами в разных пропорциях и рассаживать их по пробиркам. Какой природный процесс может служить аналогом такой процедуры? Авторы показали, что эту роль могут играть «бутылочные горлышки» — периоды сильного сокращения численности популяции с последующим ее восстановлением. Это может происходить, например, при заселении новых субстратов очень небольшим числом микробов–«основателей». Если число основателей невелико, то среди них в силу простой случайности может оказаться повышенный процент альтруистов. Популяция, которую образует эта группа основателей, будет расти быстро, тогда как другие популяции, основанные группами микробов с преобладанием эгоистов, будут расти медленно. В итоге парадокс Симпсона обеспечит рост «глобальной» доли альтруистов в совокупности всех популяций.

Чтобы доказать действенность этого механизма, авторы смешали альтруистов с эгоистами в равной пропорции, сильно разбавили полученную культуру и стали ее высевать в пробирки порциями разного объема, с приблизительно известным числом микробов в каждой порции. Размер порций оказался главным фактором, от которого зависела дальнейшая судьба альтруистов. Как и следовало ожидать, когда порции были большими, парадокс Симпсона не проявился. В большой порции, то есть в большой выборке из исходной культуры, соотношение альтруистов и эгоистов по законам статистики не может сильно отличаться от исходного. Популяции, основанные этими выборками, растут примерно с одинаковой скоростью, и альтруисты оказываются в проигрыше не только в каждой популяции по отдельности, но и во всех популяциях в целом.

Однако если порции были настолько малы, что в каждой было всего несколько бактерий, то среди этих порций обязательно оказывались такие, в которых альтруисты преобладали. Такие группы основателей давали начало быстро растущим колониям, и за счет этого общий процент альтруистов в совокупности всех популяций увеличивался. В конкретных условиях данного эксперимента для проявления эффекта Симпсона необходимо, чтобы среднее число микробов в группе основателей было не больше 10.

Авторы также показали, что, повторив несколько раз эту последовательность действий (разбавление культуры, расселение маленькими группами в пробирки, рост, соединение популяций в одну, опять разбавление и т. д.) можно добиться сколь угодно высокого процента альтруистов в культуре.

Было выявлено и еще одно условие, необходимое для распространения «генов альтруизма» в модельной системе: смешанным популяциям нельзя позволять расти слишком долго. Разбавление и расселение нужно проводить до того, как популяции достигнут стабильного уровня численности, заселив всю питательную среду в пробирке, потому что тогда различия по уровню численности между популяциями сглаживаются, и парадокс Симпсона не может проявиться (см.: Альтруисты процветают благодаря статистическому парадоксу).

Таким образом, естественный отбор при соблюдении определенных условий может обеспечивать развитие альтруизма даже тогда, когда в каждой отдельно взятой популяции он благоприятствует эгоистам, а альтруистов обрекает на постепенное вымирание. Однако спектр условий, в которых может действовать парадокс Симпсона, довольно узок, и поэтому в природе он вряд ли играет очень большую роль.

 

 

8. «Полиция нравов» у общественных насекомых

Как мы уже говорили, крупнейшим триумфом эволюции альтруизма стало появление настоящих многоклеточных организмов, в том числе животных. У животных по сравнению с микробами появились новые возможности для развития кооперации и альтруизма, основанные на сложном поведении и обучаемости. К сожалению, такие же новые возможности открылись и перед обманщиками. Обманщики стали учиться все более хитро обманывать кооператоров, а те, со своей стороны, стали вырабатывать новые методы выявления обманщиков и борьбы с ними. Эволюционная гонка вооружений продолжилась на новом уровне, и опять ни альтруисты, ни обманщики не получили решающего преимущества.

Одним из важных новшеств в этой бесконечной войне стала возможность физического (а не только химического) наказания обманщиков. Рассмотрим это на примере общественных насекомых.

Рабочие особи перепончатокрылых насекомых обычно не размножаются, посвящая себя заботам о потомстве царицы. Альтруизм перепончатокрылых принято объяснять родственным отбором, который в данном случае особенно эффективен из-за особенностей наследования пола, как мы уже знаем.

Однако у многих видов перепончатокрылых рабочие особи физиологически вполне способны к размножению, и иногда они действительно проявляют «эгоизм», откладывая собственные яйца. Эти яйца часто уничтожаются другими рабочими, которые таким образом выполняют функцию своеобразной «полиции нравов».

Недавно германские энтомологи попытались проверить, какой из двух факторов важнее для поддержания альтруизма в обществе насекомых — (1) добровольное следование принципу «разумного эгоизма», то есть родственный отбор в чистом виде,  или (2) полицейский надзор. Для этого они обработали данные по 10 видам перепончатокрылых (9 видов ос и медоносная пчела). Оказалось, что чем строже «полиция нравов», тем реже рабочие совершают акты эгоизма, откладывая собственные яйца.

Проверили также влияние степени родства между рабочими в гнезде на альтруистическое поведение. Степень родства между ними в действительности часто бывает ниже идеальных 75%, поскольку царица может спариваться с несколькими разными самцами. Выяснилось, что чем ниже степень родства между сестрами-рабочими, тем сильнее полицейский надзор, и тем реже рабочие ведут себя эгоистически. Это, как легко заметить, соответствует второй гипотезе (о ведущей роли полицейских мер) и противоречит первой гипотезе (о том, что все полностью сводится к родственному отбору). При низкой степени родства между рабочими им становится выгоднее уничтожать яйца других рабочих. Низкая степень родства также делает более выгодным «эгоистическое» поведение, но, как видно из полученных результатов, эффективный полицейский надзор явно перевешивает эгоистические устремления рабочих особей (см.: Альтруизм общественных насекомых поддерживается полицейскими методами).

По-видимому, особенности механизма наследования пола у перепончатокрылых сыграли важную роль в становлении альтруистического поведения и социальности, однако у современных видов альтруизм поддерживается в основном не косвенной «генетической выгодой», получаемой рабочими от такого поведения, а жестким полицейским контролем. Похоже на то, что кооперативная система, созданная родственным отбором, даже в таких идеальных условиях, которые наблюдаются в семьях перепончатокрылых, все равно будет разрушена обманщиками, если не сумеет выработать дополнительные средства борьбы с эгоизмом.

Эта закономерность может быть справедлива и для человеческого общества, хоть это и трудно проверить экспериментально. Общественная жизнь невозможна без альтруизма (индивид должен жертвовать своими интересами ради общества), и в конечном счете от этого выигрывают все. Однако каждой отдельной личности во многих случаях все-таки выгодно поступать эгоистически, преследуя свои корыстные интересы в ущерб коллективу. И для эффективной борьбы с эгоизмом приходится применять насильственные методы.

 

 

9. Склонность к альтруизму сильнее у тех, кому нечего терять

Вот еще один пример, показывающий, что альтруизм общественных насекомых очень далек от идеала бескорыстности.

Осы Liostenogaster flavolineata живут семьями, включающими от 1 до 10 взрослых самок, из которых только одна — самая старая — откладывает яйца, а остальные заботятся о личинках. Когда царица погибает, ее место занимает следующая по старшинству оса. Внешне помощницы ничем не отличаются от царицы, однако жизнь они ведут гораздо более тяжелую и опасную: если царица почти не покидает гнезда, то помощницам приходится летать за кормом для личинок, изнашивая крылышки и рискуя попасться на глаза хищнику. С переходом помощницы в ранг царицы ожидаемая продолжительность ее жизни резко увеличивается.

У этого вида, как и у многих других, осы-помощницы сильно различаются по степени «трудового энтузиазма». Одни, не жалея себя, проводят в поисках пищи до 90% времени, а другие предпочитают отсиживаться в безопасном гнезде и вылетают за кормом на порядок реже. На первый взгляд кажется, что эти различия трудно объяснить с позиций теории родственного отбора, поскольку степень трудового энтузиазма помощниц не зависит от степени их родства с царицей и личинками, о которых они заботятся.

Как выяснилось, каждая помощница строго дозирует свой альтруизм в зависимости от того, насколько велики ее шансы стать царицей и оставить собственное потомство. Если эти шансы туманны и зыбки (как у низкоранговых молодых ос, последних в «очереди» на царский престол), то имеет смысл работать поактивнее, чтобы хоть через чужих детей передать свои гены следующим поколениям. Если же помощница имеет высокий ранг, ей выгоднее поберечь себя и поменьше рисковать.

Этот вывод основан на результатах изящных экспериментов. Из одной семьи удаляли осу, занимающую второе место в иерархии (то есть первую по старшинству после царицы), а из другой, такой же по размерам семьи — удаляли низкоранговую молодую осу. После этого следили за поведением осы, до начала эксперимента занимавшей в иерархии третье место. В первом гнезде эта оса после удаления старшей помощницы повысила свой ранг, переместившись с третьего места на второе, во втором — осталась на третьем месте. Размер обеих семей остался одинаковым. Выяснилось, что в первом случае оса начинает работать примерно вдвое меньше. Во втором случае, когда из гнезда изымалась низкоранговая помощница, оса номер три продолжала работать столько же, сколько и раньше (см.: Склонность к альтруизму сильнее у тех, кому нечего терять).

Эти результаты показывают, что величина «альтруистического усилия» у ос действительно регулируется в зависимости от шансов данной осы на собственный репродуктивный успех. Появление такого поведения в ходе эволюции на самом деле хорошо объясняется «правилом Гамильтона» (просто нужно учитывать, что величина c, то есть цена альтруистического поведения, меняется в зависимости от обстоятельств, в том числе от шансов на «царский престол»).

 

 

10. Чтобы предотвратить появление обманщиков, нужно обеспечить генетическую идентичность кооператоров

Можно ли создать общественное устройство, где альтруизм будет поддерживаться без насилия, и при этом не будет никаких обманщиков и эгоистов? Ни осам, ни людям это пока не удалось. Но некоторые кооперативные симбиотические системы, существующие в природе, указывают на то, что в принципе можно не допустить самого появления обманщиков.

Для этого нужно свести генетическое разнообразие индивидуумов в кооперативной системе к полному нулю. Это исключает возможность конкуренции между генетически различающимися разновидностями симбионтов за то, кто из них более эффективно будет эксплуатировать общие ресурсы (ухватит себе больший кусок общего пирога). Если все симбионты генетически идентичны, эгоистическая эволюция внутри системы становится невозможной, потому что из минимального набора условий, необходимых для эволюции, — дарвиновской триады «наследственность, изменчивость, отбор» — исключается один из компонентов, а именно изменчивость. Симбионтам-близнецам не важно, кто из них ухватит для себя больший кусок, ведь с точки зрения естественного отбора они все — просто одно и то же. Их эволюционные «интересы» автоматически отождествляются с интересами всей системы. При этом отбор перестает действовать на уровне индивидуальных симбионтов и начинает действовать на уровне целых симбиотических систем.

Именно поэтому эволюции так и не удалось, несмотря на многократные «попытки», создать нормальный многоклеточный организм из генетически разнородных клеток. Все настоящие многоклеточные организмы образуются из клонов — потомков одной-единственной клетки.

Рассмотрим этот механизм на примере такой интереснейшей кооперативной симбиотической системы, как сельское хозяйство у насекомых.

Если кооперативная система состоит из крупного многоклеточного «хозяина» и маленьких «симбионтов», то для хозяина самый простой путь обеспечить генетическую идентичность симбионтов — это передавать их вертикально, то есть по наследству, причем заниматься этим должен только один из полов — либо самцы, либо самки. Именно так передаются, например, митохондрии у всех эукариот — строго по материнской линии, причем сами митохондрии размножаются клонально. Так же передают из поколения в поколения свои сельскохозяйственные культуры муравьи-листорезы. При вертикальной передаче генетическое разнообразие симбионтов автоматически поддерживается на близком к нулю уровне за счет генетического дрейфа и «бутылочных горлышек».

Существуют, однако, и симбиотические системы с горизонтальной передачей симбионтов. В таких системах симбионты у каждого хозяина генетически разнородны, они сохраняют способность к эгоистической эволюции, и поэтому среди них то и дело появляются обманщики. Например, известны штаммы обманщиков среди светящихся бактерий (симбионтов рыб и кальмаров), азотфиксирующих бактерий-ризобий (симбионтов растений), микоризных грибов, зооксантелл (симбионтов кораллов). Во всех этих случаях эволюции «не удалось» обеспечить генетическую однородность симбионтов, и поэтому хозяевам приходится бороться с обманщиками иными методами — например, иммунологическими, или просто терпеть их присутствие, полагаясь на те или иные механизмы, обеспечивающие баланс численности обманщиков и честных кооператоров – скажем, на парадокс Симпсона или на балансирующий отбор, который основан на том, что часто быть обманщиком выгодно только до тех пор, пока численность обманщиков не слишком высока (иначе будет некого обманывать). Все это не так эффективно, но что поделаешь: естественный отбор замечает только сиюминутную выгоду и совершенно не интересуется отдаленными эволюционными перспективами.

Для того чтобы развился механизм, обеспечивающий генетическую однородность симбионтов, этот механизм должен давать немедленную выгоду, иначе отбор его не поддержит. Та выгода, о которой мы говорили до сих пор, — лишение симбионтов возможности эволюционировать в обманщиков — как раз относится к категории «отдаленных перспектив» и поэтому не может работать как эволюционный фактор на микроэволюционном уровне. Но если уж какому-то виду так повезет, что вертикальная передача симбионтов будет для него сопряжена с какой-то сиюминутной выгодой и поэтому будет закреплена отбором, это может обеспечить его отдаленным потомкам триумфальный успех.

Термиты подсемейства Macrotermitinae, освоившие эффективное сельское хозяйство – выращивание грибов – до сих пор казались исключением из правил. Передача симбионтов (одомашненных грибных культур) у них не вертикальная, а горизонтальная, однако грибы-обманщики в их огородах полностью отсутствуют.

Симбиоз термитов с грибами возник единожды свыше 30 млн лет назад в экваториальной Африке и оказался очень успешным. В настоящее время подсемейство термитов-грибоводов включает 10 родов и около 330 видов, играющих важнейшую роль в круговороте веществ и функционировании тропических сообществ Старого Света. В отличие от грибов, выращиваемых муравьями-листорезами, одомашненные термитами грибы уже утратили способность к самостоятельному существованию. Они растут только в термитниках на специально обустроенных грядках из растительного материала, пропущенного через кишечник термитов.

Основав новую колонию, термиты собирают в окрестностях споры грибов Termitomyces и засевают ими свои плантации. Естественно, исходный посевной материал оказывается генетически весьма разнородным. Грибы образуют в термитнике особые маленькие плодовые тела (нодулы), содержащие бесполые споры (конидии). «Бесполыми» эти споры называют потому, что они образуются без мейоза, а их геном идентичен геному родительской грибницы. Конидии служат исключительно для размножения грибов внутри термитника. Термиты питаются нодулами, а споры проходят через их кишечник неповрежденными и используются для засева новых плантаций.

Грибам нужно позаботиться и о том, чтобы попасть в новые термитники. Конидии за пределы термитника обычно не распространяются. Для этого используются половые споры (базидиоспоры). Они образуются в плодовых телах другого типа — больших, прорастающих сквозь стены термитника наружу. Это «нормальные», обычные плодовые тела, характерные для грибов-базидиомицетов (к базидиомицетам относятся почти все съедобные грибы, плодовые тела которых мы собираем в лесу).

Из базидиоспор, принесенных термитами в новое гнездо, вырастают маленькие гаплоидные мицелии (грибницы). Клетки разных гаплоидных мицелиев сливаются и превращаются в дикарионы — клетки с двумя гаплоидными ядрами. Из них вырастают уже «настоящие», большие дикариотические мицелии, способные образовывать плодовые тела. Слияние ядер у базидиомицетов происходит только при образовании базидиоспор, непосредственно перед мейозом. Конидии содержат по два гаплоидных ядра, как и клетки мицелия, а базидиоспоры — по одному.

Таким образом, грибы производят маленькие плодовые тела в основном для термитов («альтруизм»), а большие — в основном для себя («эгоизм»). Стратегия грибов-обманщиков могла бы состоять в том, чтобы производить побольше больших плодовых тел и тратить меньше ресурсов на кормление термитов. Но среди грибов Termitomyces обманщиков нет, и до сих пор никто не знал, почему.

Эту загадку разгадали совсем недавно. Оказалось, что в каждом термитнике выращивается только один штамм грибов. При этом в разных термитниках культивируются разные штаммы.

Таким образом, стало ясно, что термиты предотвращают появление обманщиков обычным способом — при помощи монокультурного разведения симбионтов. Но как им удается создавать монокультуру из изначально разнородного посева?

Оказалось, что всё объясняется особенностями взаимоотношений между штаммами грибов при плотном посеве — в сочетании с тем фактом, что размножение грибов внутри термитника полностью контролируется термитами. Выяснилось, что у Termitomyces существует положительная корреляция между частотой встречаемости штамма в смешанной культуре и эффективностью его бесполого размножения. Иными словами, генетически идентичные мицелии помогают друг другу — но не другим мицелиям — производить конидии.

Исследователи обнаружили, что между относительной численностью штамма в смешанной культуре и эффективностью его размножения существует положительная обратная связь. Это неизбежно приводит к формированию монокультуры уже через несколько циклов «пересевов», осуществляемых термитами.

Какова природа этой положительной обратной связи? Дело в том, что отростки дикариотических мицелиев могут срастаться друг с другом, но только в том случае, если эти мицелии генетически идентичны. Чем крупнее мицелий, тем больше ресурсов он может направить на производство нодул и конидий. Это способствует росту урожайности в монокультуре и вытеснению «меньшинств».

По-видимому, дикий предок грибов Termitomyces оказался удачным кандидатом для доместикации (одомашнивания) как раз потому, что был склонен образовывать монокультуры при плотном посеве. Повышенная урожайность монокультур могла стать тем самым «сиюминутным преимуществом», которое позволило отбору поддержать и развить эту склонность на ранних этапах формирования симбиоза. В долгосрочной (макроэволюционной) перспективе она оказалась решающей, потому что избавила термитов-грибоводов от угрозы появления грибов-обманщиков. В конечном счете это обеспечило симбиотической системе эволюционный успех (см.: Выращивание монокультур — ключ к эффективности сельского хозяйства у термитов).

Между прочим, при переходе людей от охоты и собирательства к производству продовольствия (в ходе «неолитической революции», начавшейся 10–12 тысяч лет назад) проблема выбора кандидатов для доместикации тоже стояла крайне остро. Хороший симбионт — большая редкость, и во многих регионах просто не нашлось подходящих видов животных и растений. Там, где их случайно оказалось больше всего, человеческая цивилизация стала развиваться с наибольшей скоростью. Об этом подробно рассказано в замечательной книге Джареда Даймонда «Ружья, микробы и сталь» (doc-файл, 2,66 Мб).

 

Из всего сказанного видно, что если бы не проблема обманщиков, порождаемая отсутствием у эволюции дара предвидения и заботы о «благе вида» (а не гена), наша планета, вероятно, была бы царством всеобщей любви и дружбы. Но эволюция слепа, и поэтому кооперация развивается только там, где то или иное стечение специфических обстоятельств помогает обуздать обманщиков или предотвратить их появление.

Существует не так уж много удачных «инженерных решений», позволяющих справиться с проблемой обманщиков. На каждое из этих решений эволюция неоднократно «натыкалась» в своих блужданиях по пространству возможного.

 

 

11. Межгрупповая конкуренция способствует внутригрупповой кооперации

Рассмотрим еще один механизм эволюции кооперации и альтруизма, который позволит нам перейти к рассмотрению биологического объекта, который нас традиционно интересует больше всего, а именно нас самих.

Если у какого-то вида животных кооперация уже развилась настолько, что вид перешел к общественному образу жизни, то дальше начинаются интересные вещи. Во многих случаях оказывается, что индивид может успешно размножиться только будучи членом успешной группы. При этом конкуренция обычно существует не только между особями внутри группы, но и между группами. К чему это приводит, показывает модель вложенного перетягивания каната, которую разработали американские этологи.

Целью исследователей было найти простое объяснение четырем закономерностям, наблюдаемым в социальном устройстве общественных насекомых. Эти четыре закономерности перечислены на слайде.

В модели «вложенного перетягивания каната» каждый индивид эгоистически расходует часть «общественного пирога» на то, чтобы увеличить свою долю этого пирога. Эта потраченная на внутригрупповые склоки часть называется «эгоистическим усилием» данного индивида. Доля, доставшаяся в итоге каждому индивиду, зависит от соотношения его собственного «эгоистического усилия» и суммы «эгоистических усилий» остальных членов группы. Нечто подобное наблюдается у общественных насекомых, когда они осуществляют «взаимный надзор» — мешают друг другу откладывать яйца, стараясь при этом отложить свои.

На тех же принципах строятся в модели и взаимоотношения между группами. Таким образом, получается «вложенное», двухуровневое перетягивание каната. Чем больше энергии тратят особи на внутригрупповую борьбу, тем меньше ее остается для межгруппового «перетягивания» и тем меньше получается «общий пирог» группы.

Исследование этой модели при помощи теории игр показало, что модель хорошо объясняет наблюдаемые закономерности.

Авторы вывели ряд уравнений, описывающих долю ресурсов, доставшихся в итоге каждой особи при той или иной степени ее эгоистичности, и нашли для разных ситуаций «эволюционно стабильную» величину индивидуального эгоистического усилия, то есть такую величину, при которой никакие мутации, меняющие эту величину в ту или иную сторону, не дадут преимущества своим носителям и не смогут распространиться в генофонде.

Модель показала, что внутригрупповая кооперация должна расти с ростом внутригруппового родства. Это соответствует идеям Гамильтона и Холдейна о том, что степень родства между членами группы — отнюдь не второстепенный фактор, а мощный регулятор развития кооперации.

Но модель также предсказывает, что кооперация может иметь место даже при полном отсутствии родства между членами группы. Для этого необходима острая конкуренция между группами. Этим можно объяснить, например, странный факт из жизни пустынных муравьев Acromyrmex versicolor, у которых некоторые самки, способные основать новую колонию, отказываются от этой возможности ради помощи другим таким же самкам, совершенно неродственным — особенно в том случае, если компания самок-основательниц подвергается опасности набегов со стороны уже существующих колоний.

Главный вывод состоит в том, что межгрупповая конкуренция — один из важнейших, а может быть, и самый главный фактор, стимулирующий развитие кооперации и альтруизма у социальных организмов (см.: Межгрупповая конкуренция способствует внутригрупповой кооперации).

Теоретически эта модель может быть приложима не только к насекомым, но и к другим социальным животным, и даже к человеческому обществу. Аналогии вполне очевидны. Ничто так не сплачивает коллектив, как совместное противостояние другим коллективам; множество внешних врагов — обязательное условие устойчивого существования тоталитарных империй и надежное средство «сплочения» населения в альтруистический муравейник.

 

 

12. Альтруизм у людей зависит не только от воспитания, но и от генов

Прежде, чем применять к человеку какие-то модели, разработанные в рамках эволюционной этики – а эволюция альтруизма представляет собой центральную тему эволюционной этики – мы должны убедиться, что человеческая нравственность имеет хотя бы отчасти наследственную, генетическую природу, что она подвержены наследственной изменчивости, и поэтому на нее может действовать отбор.

На пчелах, бактериях и других общественных организмах, не способных к культурной эволюции, изучать становление альтруизма проще, поскольку сразу можно уверенно предполагать, что разгадка кроется в генах, определяющих поведение, а не в воспитании, культуре, традициях и т. д. С приматами, особенно с человеком, сложнее: здесь помимо обычной биологической эволюции, основанной на отборе генов, необходимо учитывать еще и социальную и культурную эволюцию, основанную на отборе идей, или мемов (в данном случае речь идет о таких мемах, как морально-нравственные нормы, правила поведения в обществе и т. п.)

Исследования последних лет показали, что моральные качества людей в значительной мере определяются генами, а не только воспитанием. Причем необходимо подчеркнуть, что имеющиеся методы позволяют оценивать только «верхушку айсберга» – только те наследственные черты, по которым у современных людей еще сохранилась изменчивость, которые еще не зафиксировались в нашем генофонде. Многие из аллелей, которые обеспечивали рост альтруизма у наших предков, наверняка давно уже зафиксировались, то есть достигли стопроцентной частоты. Они есть у всех людей, и поэтому такие методы, как близнецовый и сравнительно-генетический анализ, уже не могут их выявить.  

Ясно, что способность к альтруистическому поведению в основе своей «заложена» в наших генах — ведь кооперация была необходима нашим предкам задолго до того, как они овладели речью и тем самым создали «питательную среду» для распространения и эволюции мемов. Ясно, что практически любой здоровый человек при соответствующем воспитании способен научиться вести себя более или менее «кооперативно» и «альтруистично». Значит, некий генетический «базис» альтруизма есть у всех нас — соответствующие гены прочно зафиксировались в человеческой популяции. Однако до сих пор имеется очень мало экспериментальных данных, на основании которых можно судить о том, в какой фазе находится эволюция альтруизма в современном человечестве: то ли «генетический» этап давно закончился, и сегодня актуальными являются только социально-культурные аспекты этой эволюции, то ли эволюция альтруизма продолжается и на уровне генов.

В первом случае следует ожидать, что наследственная изменчивость людей по признакам, связанным с альтруизмом, очень мала или вовсе отсутствует, а столь очевидные всем нам различия по уровню доброты и порядочности объясняются исключительно воспитанием, условиями жизни и разными случайными обстоятельствами.

Во втором случае мы должны ожидать, что эти различия отчасти объясняются также и генами. «Отчасти» — потому что роль внешних факторов в становлении человеческой личности слишком очевидна, чтобы кому-то пришло в голову ее отрицать. Вопрос ставится следующим образом: оказывают ли индивидуальные генетические различия хоть какое-то влияние на наблюдаемую вариабельность людей по степени кооперативности, альтруизма и взаимного доверия.

В поисках ответа на этот вопрос используется, в частности, близнецовый анализ. При помощи специальных тестов определяют степень альтруизма (или, например, таких качеств, как доверчивость и благодарность) у множества пар однояйцовых и разнояйцовых близнецов, а потом сравнивают сходство результатов у разных пар. Если однояйцовые близнецы больше похожи друг на друга по своей доброте, чем разнояйцовые, это веский довод в пользу генетической природы данного признака.

Такие исследования показали, что склонность к добрым поступкам, доверчивости и благодарности имеет в значительной мере генетическую природу и подвержена наследственной изменчивости у современных людей. Наблюдаемые у людей различия по степени доверчивости и благодарности как минимум на 10–20% предопределены генетически (см.: Доверчивость и благодарность — наследственные признаки).

Это очень серьезный вывод, имеющий далеко идущие последствия. Он означает, что биологическая эволюция альтруизма в человечестве еще не закончена. В популяции сохранился полиморфизм по генам, определяющим большую или меньшую склонность к кооперативному поведению и взаимному доверию. По-видимому, в разных природных, социальных и экономических условиях естественный отбор благоприятствует то доверчивым кооператорам, то недоверчивым эгоистам, и переменчивость этих условий способствует сохранению разнообразия. Есть и другой вариант объяснения, основанный не на переменчивости условий, а на частотно-зависимом «балансирующем» отборе. Чем больше кругом доверчивых альтруистов, тем выгоднее паразитировать на чужой доброте; но если паразитов становится много, их стратегия оказывается уже не столь выгодной, да и общество начинает воспринимать их как реальную угрозу и вырабатывает меры для обуздания эгоизма.

Выявляются и конкретные гены, влияющие на моральные качества человека. Приведу один пример. Сейчас активно изучается действие нейропептидов окситоцина и вазопрессина на социальное поведение животных и людей. В частности, оказалось, что у людей перназальное введение окситоцина повышает доверчивость и щедрость. С другой стороны, близнецовый анализ показывает, что эти черты характера являются отчасти наследственными. Это позволило предположить, что те или иные аллели генов, связанных с окситоцином и вазопрессином, могут влиять на склонность людей к альтруистическому поведению.

Недавно генетикам удалось обнаружить связь между некоторыми аллельными вариантами гена окситоцинового рецептора (OXTR) и склонностью людей проявлять бескорыстный альтруизм. Окситоциновый рецептор — белок, вырабатываемый некоторыми клетками мозга и отвечающий за их восприимчивость к окситоцину. Аналогичные свойства  обнаружены также и у гена вазопрессинового рецептора (AVPR1a).

В регуляторных областях этих генов имеются так называемые однонуклеотидные полиморфизмы (single nucleotide polimorphisms, SNP). Это такие нуклеотиды, которые могут быть разными у разных людей (большая часть каждого гена, естественно, одинакова у всех людей). Оказалось, что некоторые из аллелей этих генов обеспечивают меньшую, а другие – большую склонность к альтруизму (см.: Найден ген, влияющий на склонность к добрым поступкам).

Все это говорит о том, что альтруизм у людей даже сегодня еще может развиваться под действием биологических механизмов, а не только социально-культурных факторов.

 

 

13. Альтруизм, парохиализм и стремление к равенству у детей

В заключительной части своего доклада я расскажу о новых исследованиях, которые помогают понять эволюционные основы человеческой нравственности.

У животных в большинстве случаев альтруизм либо направлен на родственников (что объясняется теорией родственного отбора), либо основан на принципе «ты мне — я тебе». Это явление называется «реципрокным, или взаимным альтруизмом». Оно встречается у животных, достаточно разумных, чтобы выбирать надежных партнеров, следить за их репутацией и наказывать обманщиков, потому что системы, основанные на взаимном альтруизме, крайне уязвимы и вообще не могут существовать без эффективных средств борьбы с обманщиками.

По-настоящему бескорыстная забота о неродственниках в природе встречается редко. Возможно, человек — чуть ли не единственный вид животных, у которого такое поведение получило заметное развитие. Впрочем, и люди гораздо охотнее помогают «своим», чем «чужим», хотя понятие «свой» для нас не всегда совпадает с понятием «родственник».

Недавно была предложена интересная теория, согласно которой альтруизм у людей развился под влиянием частых межгрупповых конфликтов (Choi J. K., Bowles S. The coevolution of parochial altruism and war // Science. 2007. V. 318. P. 636–640). Согласно этой теории, альтруизм у наших предков был направлен в основном на членов «своей» группы. При помощи математических моделей было показано, что альтруизм мог развиваться только в комплексе с так называемым парохиализмом — враждебностью к чужакам. В условиях постоянных войн с соседями сочетание внутригруппового альтруизма с парохиализмом обеспечивает наибольшие шансы на успешное размножение индивидуума. Получается, что такие, казалось бы, противоположные свойства человека, как доброта и воинственность, развивались в едином комплексе. Ни та, ни другая из этих черт по отдельности не приносили бы пользы своим обладателям.

Для проверки этой теории нужны факты, которые можно получить, в частности, при помощи психологических экспериментов. Как ни странно, мы до сих пор очень мало знаем о том, как происходит становление альтруизма и парохиализма в ходе развития детей. Недавно этот пробел начал восполняться благодаря специальным экспериментальным исследованиям.

Выяснилось, что большинство трех- и четырехлетних детей ведут себя как абсолютные эгоисты. Принимая решения, маленький ребенок обращает внимание только на свою собственную выгоду; судьба других детей ему совершенно безразлична. В возрасте 5–6 лет ситуация начинает меняться, а в 7–8 лет уже четко выражена готовность помочь ближнему (например, поделиться конфетой). Однако, как показали специальные тесты, это поведение основано не на бескорыстном желании помочь, а на стремлении к равенству и справедливости: дети склонны отвергать нечестные, неравные варианты раздела конфет как в свою, так и в чужую пользу.

Среди детей есть около 5% добряков, беззаветных альтруистов, которые всегда заботятся о других, и доля таких детей не меняется с возрастом. Есть «вредины», которые пытаются все отобрать у других и никому ничего не дают. Их число снижается с возрастом. И есть «любители справедливости», которые старются все поделить поровну, и доля таких детей стремительно растет с возрастом.

Эти результаты заставляют задуматься. Какую роль играют в нашем обществе 5% добряков, не они ли дают нам моральные ориентиры, не на них ли держится мир? А если так, почему их всего 5%? Может быть, потому, что излишнее размножение беззаветных альтруистов создает слишком благоприятную среду для эгоистов, которые будут паразитировать на чужой доброте. С этих позиций становится понятной и ключевая роль «любителей справедливости»: они сдерживают развитие паразитизма (см.: Альтруизм у детей связан со стремлением к равенству).

Полученные результаты также хорошо согласуются с теорией совместного развития альтруизма и парохиализма под влиянием острой межгрупповой конкуренции. Напомню, что парохиализм – это предпочтение своих, например, когда со своими делятся, а с чужими – нет.

Не исключено, что эволюционная история этих свойств психики в общих чертах повторяется в ходе развития детей. Оказалось, что альтруизм и парохиализм развиваются у детей более или менее одновременно, в возрасте 5-7 лет. Причем оба свойства сильнее выражены у мальчиков, чем у девочек. Это легко объяснить с эволюционной точки зрения. Главными участниками межгрупповых конфликтов и войн всегда были мужчины. В условиях первобытной жизни мужчины-воины были лично заинтересованы в том, чтобы не только они сами, но и другие мужчины племени находились в хорошей физической форме: не было смысла «блюсти справедливость» за их счет. Что же касается женщин, то в случае поражения группы в межгрупповом конфликте их шансы на успешное размножение снижались не так сильно, как у мужчин. Для женщин последствия такого поражения могли ограничиться лишь сменой полового партнера, тогда как мужчины могли погибнуть или остаться без жен. В случае победы женщины тоже выигрывали явно меньше, чем мужчины, которые могли, к примеру, захватить пленниц.

Разумеется, эти свойства детской психики зависят не только от генов, но и от воспитания, то есть являются продуктом не только биологической, но и культурной эволюции. Но это не делает полученные результаты менее интересными. В конце концов, законы и движущие силы биологической и культурной эволюции во многом сходны, а сами процессы могут плавно перетекать друг в друга. Например, новый поведенческий признак может поначалу передаваться из поколения в поколение посредством обучения и подражания, а затем постепенно закрепиться и в генах.

 

 

14. Межгрупповые войны — причина альтруизма?

Идею о связи эволюции альтруизма с межгрупповыми конфликтами высказал еще Чарльз Дарвин в книге «Происхождение человека и половой отбор», где он написал буквально следующее:

«Когда два племени первобытных людей… сталкивались между собой, то племя, которое… заключало в себе большее число храбрых, верных и преданных членов… должно было иметь больше успеха и покорить другое... Но с течением времени оно, как показывает история всех прошедших веков, будет, в свою очередь, покорено каким-либо другим, еще более одаренным племенем. Таким образом общественные и нравственные качества развиваются и распространяются мало-помалу по всей земле».

Как мы уже знаем, математические модели показывают, что острая межгрупповая конкуренция может способствовать развитию внутригруппового альтруизма. Для этого должно выполняться несколько условий, из которых наиболее важными являются три.

Во-первых, репродуктивный успех индивида должен зависеть от процветания группы (причем в понятие «репродуктивный успех» включается и передача своих генов потомству через родственников, которым индивид помог выжить и которые имеют много общих с ним генов). В том, что это условие выполнялось в коллективах наших предков, сомневаться не приходится. Если группа проигрывает межгрупповой конфликт, часть ее членов погибает, а у выживших снижаются шансы вырастить здоровое и многочисленное потомство. Например, в ходе межплеменных войн у шимпанзе группы, проигрывающие в борьбе с соседями, постепенно теряют и своих членов, и территорию, то есть доступ к пищевым ресурсам.

Второе условие состоит в том, что межгрупповая вражда у наших предков должна была быть достаточно острой и кровопролитной. Доказать это значительно труднее.

Третье условие состоит в том, что средняя степень генетического родства между соплеменниками должна быть существенно выше, чем между группами. В противном случае естественный отбор не сможет поддержать жертвенное поведение (если исходить из предположения, что альтруизм не дает индивидууму никаких косвенных преимуществ — ни через повышение репутации, ни через благодарность соплеменников).

Недавно Сэмюэль Боулс, один из авторов теории сопряженной эволюции альтруизма и враждебности к чужакам, попытался оценить, достаточно ли сильно враждовали между собой племена наших предков и достаточно ли высока была степень родства внутри группы, чтобы естественный отбор мог обеспечить развитие внутригруппового альтруизма.

Боулс показал, что уровень развития альтруизма зависит от четырех параметров:

1) от интенсивность межгрупповых конфликтов, которую можно оценить по уровню смертности в войнах;

2) от того, в какой степени повышение доли альтруистов (например, храбрых воинов, готовых умереть ради своего племени) увеличивает вероятность победы в межгрупповом конфликте;

3) от того, насколько родство внутри группы превышает родство между враждующими группами;

4) от размера группы.

Чтобы понять, в каком диапазоне находились эти четыре параметра в коллективах первобытных людей, Боулс привлек обширные археологические данные. Он пришел к заключению, что конфликты в палеолите были весьма кровопролитными: от 5 до 30% всех смертей, по-видимому, приходилось на межгрупповые конфликты.

Размеры человеческих коллективов в палеолите и степень родства в них тоже можно оценить по данным археологии, генетики и этнографии.

В итоге остается только одна величина, которую почти невозможно оценить напрямую, – степень зависимости военных успехов группы от наличия в ней альтруистов (героев, храбрецов).

Расчеты показали, что даже при самых низких значениях этой величины естественный отбор в популяциях охотников-собирателей должен способствовать поддержанию очень высокого уровня внутригруппового альтруизма. «Очень высокий» уровень в данном случае соответствует величинам с порядка 0,02–0,03. Иными словами, «ген альтруизма» будет распространяться в популяции, если шансы выжить и оставить потомство у носителя такого гена на 2–3% ниже, чем у соплеменника-эгоиста. Может показаться, что 2–3% — это не очень высокий уровень самопожертвования. Однако на самом деле это весьма значительная величина. Боулс наглядно демонстрирует это при помощи двух несложных расчетов.

Пусть изначальная частота встречаемости данного аллеля в популяции равна 90%. Если репродуктивный успех носителей этого аллеля на 3% ниже, чем у носителей других аллелей, то уже через 150 поколений частота встречаемости «вредного» аллеля снизится с 90 до 10%. Таким образом, с точки зрения естественного отбора трехпроцентное снижение приспособленности — очень дорогая цена.

Теперь попробуем взглянуть на ту же самую величину (3%) с «военной» точки зрения. Альтруизм на войне проявляется в том, что воины бросаются на врагов, не щадя своей жизни, в то время как эгоисты прячутся за их спинами. Расчеты показали, что для того, чтобы степень альтруизма оказалась равной 0,03, военная смертность среди альтруистов должна составлять свыше 20% (учитывая реальную частоту и кровопролитность палеолитических войн), то есть всякий раз, когда племя сталкивается с соседями не на жизнь, а на смерть, каждый пятый альтруист должен пожертвовать жизнью ради общей победы. Надо признать, что это не такой уж низкий уровень героизма.

Эта модель приложима не только к генетическим аспектам альтруизма, но и к культурным, передающимся путем обучения и воспитания (см.: Межгрупповые войны — причина альтруизма?).

Таким образом, уровень межгрупповой агрессии у первобытных охотников-собирателей был вполне достаточен для того, чтобы «гены альтруизма» распространялись среди людей. Этот механизм работал бы даже в том случае, если внутри каждой группы отбор благоприятствовал исключительно эгоистам. А ведь это условие, скорее всего, соблюдалось далеко не всегда. Самоотверженность и военные подвиги могли повышать репутацию, популярность и, следовательно, репродуктивный успех людей в первобытных коллективах.

Кстати, этот механизм поддержания альтруизма – через улучшение репутации того, кто совершает альтруистический акт – работает не только у людей, но и у многих животных. Например, у арабских серых дроздов (Turdoides squamiceps) только высокоранговые самцы имеют право кормить своих сородичей. Эти общественные птицы конкурируют за право совершить «добрый поступок» (посидеть над гнездами в роли «часового», помочь ухаживать за птенцами, накормить товарища). Альтруистические акты приобрели у них отчасти символическое значение и служат для демонстрации и поддержания собственного статуса.

Вопросы репутации чрезвычайно важны в любом человеческом коллективе. Высказывалась даже идея, что главным стимулом для развития речи у наших предков была необходимость посплетничать. Сплетни — древнейшее средство распространения компрометирующих сведений о «неблагонадежных» членах социума, что способствует сплочению коллектива и наказанию «обманщиков» (R. Dunbar)

В одном докладе совершенно невозможно рассказать обо всех интересных исследованиях, связанных с эволюцией альтруизма. На этом слайде перечислено кое-что из того, что осталось за рамками доклада.   

 

 

ЗАКЛЮЧЕНИЕ

Несколько слов о том, какие этические выводы можно сделать – а какие ни в кое случае делать нельзя – из данных эволюционной этики. Если тот или иной аспект нашего поведения, эмоций и морали вытекает из эволюционных закономерностей (имеет эволюционное объяснение), это вовсе не значит, что тем самым данное поведение получило эволюционное «оправдание», что оно является хорошим и правильным. Например, враждебность к чужакам и войны с иноплеменниками были неотъемлемой частью нашей эволюционной истории – и даже необходимым условием развития основ нашей морали, склонности к кооперации и альтруизму. Но то, что исторически наш альтруизм был направлен только на «своих», а к чужакам наши предки испытывали отвращение и вражду, не означает, что это тот образец нравственности, которому мы должны подражать сегодня. Эволюционная этика объясняет, но не оправдывает наши врожденные склонности. К счастью, эволюция дала человеку еще и разум, и поэтому мы можем и должны подняться над своими биологическими корнями и пересмотреть устаревшие этические рамки, которые эволюция навязала нашим предкам. То, что целесообразно для распространения генов у охотников каменного века, не годится для мыслящего цивилизованного существа. Эволюционная этика предупреждает нас о том, что в нас сидит врожденная склонность делить людей на своих и чужих, и к чужим испытывать отвращение и неприязнь. Мы, как разумные существа, должны это понять и преодолеть.



2009:12:10
Обсуждение [0]


Источник: Проблемы эволюции